基于Monte Carlo方法的圓截面直角彎管傳輸幾率

2014-02-23 張以忱 東北大學(xué)機(jī)械工程與自動化學(xué)院

  借助Matlab軟件,用蒙特卡洛方法對圓截面直角彎管在分子流態(tài)下的傳輸幾率進(jìn)行了模擬計算。通過數(shù)學(xué)方法實(shí)現(xiàn)對氣體分子的虛擬約束和跟蹤。本文先通過模擬最簡單的圓直管道傳輸幾率,并與Clausing、Dushman方法進(jìn)行比較,驗(yàn)證了該方法的正確性和建模的合理性,進(jìn)而對于圓截面直角彎管的傳輸幾率進(jìn)行了模擬計算,將模擬結(jié)果與兩種等效算法比較得出:在分子流下計算圓截面直角彎管的傳輸幾率時,Davis的等效方法較傳統(tǒng)的等效方法更為合理。

  在真空系統(tǒng)設(shè)計與計算中,為了表征稀薄氣體通過真空系統(tǒng)管路元件的流動,通常給出流導(dǎo)幾率(即傳輸幾率),流導(dǎo)幾率是確定氣體流量的一個重要參數(shù)。圓截面直角彎管是真空系統(tǒng)常用的管道結(jié)構(gòu),其在分子流狀態(tài)下的傳輸幾率是衡量真空設(shè)備和真空性能的重要參數(shù)。

1、圓截面直角彎管傳輸幾率的模擬計算

  1.1、基本假設(shè)及概率模型

  基于管道中的氣流狀態(tài)為分子狀態(tài),進(jìn)行如下假設(shè):

  (1)氣流為穩(wěn)定氣流,氣體分子數(shù)守恒,即管壁無吸氣和放氣現(xiàn)象。這意味著射入管口的分子最終只有兩種可能:從出口逸出或者從入口逸出。兩者的幾率之和等于1。

  (2)入射分子和反射分子都遵循余弦定律。

  (3)分子在管道內(nèi)的運(yùn)動是相互獨(dú)立的,即分子之間互不碰撞,氣體分子只與管壁發(fā)生碰撞。

  (4)評定參數(shù)C約等于1,忽略氣體分子在分子流態(tài)下通過直圓管道的位置束流效應(yīng)。

  因?yàn)闅怏w以分子流態(tài)流動,就每個分子而言,從分子飛入管道與管壁碰撞后產(chǎn)生漫反射直至分子逸出管道,分子的整個運(yùn)動過程都是隨機(jī)的。故管道的傳輸幾率本身就是一種概率統(tǒng)計問題。每個分子的隨機(jī)運(yùn)動都可以用一個隨機(jī)變量來表示,通常在計算機(jī)上采用(0,1)區(qū)間均勻分布的偽隨機(jī)數(shù)進(jìn)行抽樣,用數(shù)學(xué)方法模擬每個分子的運(yùn)動過程,根據(jù)計算機(jī)跟蹤每個分子,統(tǒng)計進(jìn)入管道的分子總數(shù)N和逸出管道出口的分子數(shù)n,可以得到管道的傳輸幾率Pr

Pr=n/N(1)

  N越大,Pr越準(zhǔn)確。當(dāng)N足夠大時,Pr就足夠準(zhǔn)確。

  1.2、圓直管道傳輸幾率

  在計算圓截面直角彎管的傳輸幾率之前,先進(jìn)行最簡單的圓直管道傳輸幾率計算并與Clausing、Dushman方法計算的傳輸幾率進(jìn)行對比,驗(yàn)證MonteCarlo法計算傳輸幾率的準(zhǔn)確性。圓直管道傳輸幾率的計算方法與圓截面直角彎管的傳輸幾率計算中的橫管的部分相似,只不過不用判斷分子是否進(jìn)入縱管,而是直接判斷其是否從出口飛出,具體方法在下文中詳述。

  利用Matlab軟件進(jìn)行編程模擬,計算出不同長徑比的圓直管道的傳輸幾率,將這些數(shù)據(jù)與Clausing、Dushman方法計算的相應(yīng)傳輸幾率繪制在同一圖中,如圖1所示。

基于Monte Carlo方法的圓截面直角彎管傳輸幾率

圖1 MonteCarlo法計算的傳輸幾率Pr和Clausing系數(shù)Kc、Dushman的對比

  從圖1中可以看出,用MonteCarlo法模擬計算的傳輸幾率Pr與Clausing積分方程的近似解有很強(qiáng)的一致性。在L/R=1.5處出現(xiàn)最大殘差0.0105,造成約1.8%的相對誤差。相對誤差最大值出現(xiàn)在L/R=17處,達(dá)到了5.23%。而Dushman方法計算出來的傳輸幾率與其他兩者差別很大,在L/R=5.1處相對誤差達(dá)到了13.52%。隨著L/R逐漸增大,三條曲線逐漸趨于一致。用MonteCarlo法模擬計算的圓直管的傳輸幾率與用Clausing方程計算的近似解十分接近,這證明了該方法模擬計算管道的傳輸幾率的準(zhǔn)確性。因此,可以用類似上述的模型對圓截面直角彎管的傳輸幾率進(jìn)行模擬計算。

2、結(jié)論

  本文主要采用MonteCarlo法模擬計算分子流態(tài)下管道的傳輸幾率,先驗(yàn)證MonteCarlo法計算圓直管的傳輸幾率的準(zhǔn)確性,再通過與Clausing積分方程的近似解和Dushman近似計算的結(jié)果進(jìn)行對比,得到模擬結(jié)果與Clausing積分方程的近似解具有較好的吻合性,Dushman近似計算的結(jié)果與MonteCarlo模擬結(jié)果相差較大。然后采用該方法模擬計算圓截面直角彎管的傳輸幾率,并與目前常采用的傳統(tǒng)的等效長度法、Davis等效法進(jìn)行對比,傳統(tǒng)的等效長度法與模擬結(jié)果相差較大,Davis等效法與模擬結(jié)果具有較好的吻合性。因此在理論上計算分子流態(tài)下的彎管的傳輸幾率時,可以根據(jù)Davis等效法來進(jìn)行計算。