平衡磁控濺射的概念和優缺點
平衡磁控濺射即傳統的磁控濺射,是在陰極靶材背后放置芯部與外環磁場強度相等或相近的永磁體或電磁線圈,在靶材表面形成與電場方向垂直的磁場。沉積室充入一定量的工作氣體,通常為Ar,在高壓作用下Ar 原了電離成為Ar+離子和電子,產生輝光放電,Ar+ 離子經電場加速轟擊靶材,濺射出靶材原子、離子和二次電子等。
電子在相互垂直的電磁場的作用下,以擺線方式運動,被束縛在靶材表面,延長了其在等離子體中的運動軌跡,增加其參與氣體分子碰撞和電離的過程,電離出更多的離子,提高了氣體的離化率,在較低的氣體壓力下也可維持放電,因而磁控濺射既降低濺射過程中的氣體壓力,也同時提高了濺射的效率和沉積速率。
但平衡磁控濺射也有不足之處,例如:由于磁場作用,輝光放電產生的電子和濺射出的二次電子被平行磁場緊緊地約束在靶面附近,等離子體區被強烈地束縛在靶面大約60 mm 的區域,隨著離開靶面距離的增大,等離子濃度迅速降低,這時只能把工件安放在磁控靶表面50~100 mm的范圍內,以增強離子轟擊的效果。這樣短的有效鍍膜區限制了待鍍工件的幾何尺寸,不適于較大的工件或裝爐量,制約了磁控濺射技術的應用。且在平衡磁控濺射時,飛出的靶材粒子能量較低,膜基結合強度較差,低能量的沉積原子在基體表面遷移率低,易生成多孔粗糙的柱狀結構薄膜。提高被鍍工件的溫度固然可以改善膜層的結構和性能,但是在很多的情況下,工件材料本身不能承受所需的高溫。
圖1 (a) 平衡磁控濺射(b) 非平衡磁控濺射
非平衡磁控濺射的出現部分克服了以上缺點,將陰極靶面的等離子體引到濺射靶前200~300 mm 的范圍內,使基體沉浸在等離子體中,如圖1 所示。這樣,一方面,濺射出來的原子和粒子沉積在基體表面形成薄膜,另一方面,等離子體以一定的能量轟擊基體,起到離子束輔助沉積的作用,大大的改善了膜層的質量。
相關文章閱讀: